1,182 research outputs found

    Born-Infeld Lagrangian using Cayley-Dickson algebras

    Full text link
    We rewrite the Born-Infeld Lagrangian, which is originally given by the determinant of a 4×44 \times 4 matrix composed of the metric tensor gg and the field strength tensor FF, using the determinant of a (4⋅2n)×(4⋅2n)(4 \cdot 2^n) \times (4 \cdot 2^n) matrix H4⋅2nH_{4 \cdot 2^{n}}. If the elements of H4⋅2nH_{4 \cdot 2^{n}} are given by the linear combination of gg and FF, it is found, based on the representation matrix for the multiplication operator of the Cayley-Dickson algebras, that H4⋅2nH_{4 \cdot 2^{n}} is distinguished by a single parameter, where distinguished matrices are not similar matrices. We also give a reasonable condition to fix the paramet

    The Yellow Excitonic Series of Cu2O Revisited by Lyman Spectroscopy

    Full text link
    We report on the observation of the yellow exciton Lyman series up to the fourth term in Cu2O by time-resolved mid-infrared spectroscopy. The dependence of the oscillator strength on the principal quantum number n can be well reproduced using the hydrogenic model including an AC dielectric constant, and precise information on the electronic structure of the 1s exciton state can be obtained. A Bohr radius a_{1s}=7.9 A and a 1s-2p transition dipole moment \mu_{1s-2p}= 4.2 eA were found

    Study of ortho-to-paraexciton conversion in Cu2_2O by excitonic Lyman spectroscopy

    Full text link
    Using time-resolved 1s1s-2p2p excitonic Lyman spectroscopy, we study the orthoexciton-to-paraexcitons transfer, following the creation of a high density population of ultracold 1s1s orthoexcitons by resonant two-photon excitation with femtosecond pulses. An observed fast exciton-density dependent conversion rate is attributed to spin exchange between pairs of orthoexcitons. Implication of these results on the feasibility of BEC of paraexcitons in Cu2_2O is discussed

    Coexistence and competition of local- and long-range polar orders in a ferroelectric relaxor

    Full text link
    We have performed a series of neutron diffuse scattering measurements on a single crystal of the solid solution Pb(Zn1/3_{1/3}Nb2/3_{2/3})O3_3 (PZN) doped with 8% PbTiO3_3 (PT), a relaxor compound with a Curie temperature TC∼450_C \sim 450 K, in an effort to study the change in local polar orders from the polar nanoregions (PNR) when the material enters the ferroelectric phase. The diffuse scattering intensity increases monotonically upon cooling in zero field, while the rate of increase varies dramatically around different Bragg peaks. These results can be explained by assuming that corresponding changes occur in the ratio of the optic and acoustic components of the atomic displacements within the PNR. Cooling in the presence of a modest electric field E⃗\vec{E} oriented along the [111] direction alters the shape of diffuse scattering in reciprocal space, but does not eliminate the scattering as would be expected in the case of a classic ferroelectric material. This suggests that a field-induced redistribution of the PNR has taken place

    Formation and decay of electron-hole droplets in diamond

    Full text link
    We study the formation and decay of electron-hole droplets in diamonds at both low and high temperatures under different excitations by master equations. The calculation reveals that at low temperature the kinetics of the system behaves as in direct-gap semiconductors, whereas at high temperature it shows metastability as in traditional indirect-gap semiconductors. Our results at low temperature are consistent with the experimental findings by Nagai {\em et al.} [Phys. Rev. B {\bf 68}, 081202 (R) (2003)]. The kinetics of the e-h system in diamonds at high temperature under both low and high excitations is also predicted.Comment: 7 pages, 8 figures, revised with some modifications in physics discussion, to be published in PR

    An Anomalous Phase in the Relaxor Ferroelectric Pb(Zn1/3_{1/3}Nb2/3_{2/3})O3_3

    Full text link
    X-ray diffraction studies on a Pb(Zn1/3_{1/3}Nb2/3_{2/3})O3_3 (PZN) single crystal sample show the presence of two different structures. An outer-layer exists in the outer most ∼\sim 10 to 50~μ\mum of the crystal, and undergoes a structural phase transition at the Curie temperature TC≈410T_C\approx410 K. The inside phase is however, very different. The lattice inside the crystal maintains a cubic unit cell, while ferroelectric polarization develops below TCT_C. The lattice parameter of the cubic unit cell remains virtually a constant, i.e., much less variations compared to that of a typical relaxor ferroelectric, in a wide temperature range of 15 K to 750 K. On the other hand, broadening of Bragg peaks and change of Bragg profile line-shapes in both longitudinal and transverse directions at TCT_C clearly indicate a structural phase transition occurring.Comment: to be submitted for PR
    • …
    corecore